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Abstract. This paper discusses solving the forward problem for electrical resis-
tance tomography (ERT). The mathematical model is governed by Laplace’s equa-
tion with the most general boundary conditions forming the so-called complete-
electrode model (CEM). We examine this problem in simply-connected and multi-
ply - connected domains (rigid inclusion, cavity and composite bi-material). This
direct problem is solved numerically using the boundary element method (BEM)
and the method of fundamental solutions (MFS). The resulting BEM and MFS so-
lutions are compared in terms of accuracy, convergence and stability. Anticipating
the findings, we report that the BEM provides a convergent and stable solution,
whilst the MFS places some restrictions on the number and location of the source
points.

Keywords: Electrical impedance/resistance tomography; Complete-electrode
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1 Introduction

Electrical impedance tomography (EIT) is a non-intrusive, low-cost and portable
technique of imaging the interior of a specimen based on the knowledge of the
injected currents and the resulted voltages which are measured on the electrodes,
as explained in [25, 26]. It has widespread applications in medicine, geophysics
and industry. When using this technique in electrostatics, for example, one seeks
to create images of the electrical conductivity distribution in the body from static
electric measurements on the boundary of the body, [18]. The EIT direct (for-
ward) problem provides the current flux on the boundary, which in turn, leads to
calculation of voltages, via an estimated conductivity distribution. In contrast,
the inverse EIT problem aims to reconstruct the inner conductivity distribution
from the knowledge of the voltages for a wide pattern of injecting currents. In
this iterative optimization process, the nonlinear least-squares objective function
has to be evaluated many times using the forward solver. Consequently, there is
a need to obtain the solution of the direct problem accurately and fast if it is to
be useful for real-time monitoring, [11,12,22,23].

If all the quantities involved are real then, this version of the more general com-
plex EIT is also known as electrical resistance tomography (ERT). We mention
that some comparison has been previously performed in [10] between the finite
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volume method (FVM) and the finite element method (FEM), for the gap model
of EIT. Also, very recently on improved boundary distributed source method has
been compared in [8] with the more standard BEM and FEM numerical forward
solvers for ERT.

We begin with the mathematical formulation (Section 2) which describes the
complete-electrode model (CEM) for ERT. Since in the direct problem of the CEM
the constant voltage on each electrode is unknown, we can eliminate it by integrat-
ing the associated Robin boundary condition, as described in [9]. The resulting
mathematical model is then solved using two numerical methods. These are the
boundary element method (BEM) (Section 3) and, for the first time, the meshless
method of fundamental solutions (MFS) (Section 4). In the same spirit as [8], we
compare thoroughly the numerical results obtained by these two methods for both
simply-connected (Section 5) and multiply-connected domains containing a rigid
inclusion or a cavity (Section 6). An extension to composite bi-materials is also
performed (Section 7). Finally, the conclusions of this study (Section 8) are given
paving the way for future work on solving the inverse problem of ERT/EIT.

2 Mathematical Formulation

In this section, we consider solving Laplace’s equation in a two-dimensional bounded
domain Ω, namely,

52u = 0, in Ω, (1)

subject to certain boundary conditions which make the problem the so-called
‘complete-electrode model‘ (CEM), [24]. In this model, on the boundary ∂Ω there
are attached L electrodes, εp, for p = 1, L, see Figure 1. On these electrodes we
have the Robin boundary condition, [9],

u+ zp
∂u

∂n
− 1

`p

∫
εp

u ds =
zpIp
`p

, on εp, p = 1, L, (2)

where n is the outward unit normal to the boundary ∂Ω, `p is the length of the
electrode εp,

Ip =

∫
εp

∂u

∂n
ds (3)

is the injected constant current applied on the electrode εp and satisfying
∑L
p=1 Ip =

0, and zp > 0 is the constant contact impedance. In equations (1)-(3) we have
assumed that the medium Ω has unit constant conductivity, but later on we shall
also consider a piecewise constant version. The derivation of the boundary condi-
tion (2) is as follows. The constant voltages Up on the electrodes εp, that are to
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be determined in the direct problem, are calculated in the inverse problem from
the Robin boundary condition

u+ zp
∂u

∂n
= Up, on εp, p = 1, L. (4)

Then, by integrating (4) over εp, and using (3) we can eliminate the unknown Up
to obtain (2).
The electric current is assumed to vanish on the gaps gp for p = 1, L, between the
electrodes on the boundary part, so that

∂u

∂n
= 0, on ∂Ω\∪Lp=1εp =: ∪Lp=1gp. (5)

In order to obtain a unique solution we also need that, [1],∫
∂Ω

u ds = 0. (6)

Equations (1), (2), (5) and (6) represent the direct problem of ERT if the domain
Ω is simply-connected. If Ω is multiply-connected, e.g. it contains holes, then an
additional boundary condition of the form

u = 0, or
∂u

∂n
= 0, or z

∂u

∂n
+ u = 0 (7)

should be applied on the inner boundary portions of ∂Ω, where z ≥ 0 is the contact
impedance.

The CEM given by equations (1), (3)-(6) is uniquely solvable, [24], and has
been validated in [8] as being in most agreement with experiments compared with
the simpler continuous, gap and shunt models of ERT/EIT.

Without loss of generality, we can assume that Ω is the unit disk {(x, y) ∈
R2|x2 + y2 < 1}, otherwise we can always map conformally the simply-connected
domain Ω onto the unit disk.

A closed form solution of the direct problem of ERT is available only in very
restricted cases, e.g. for L = 2 electrodes, and no-impedances z1 = z2 = 0, [20],
and therefore numerical methods are generally necessary. In the next sections we
describe and compare two such numerical methods.
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Figure 1: The electrodes attached to the boundary in two-dimensional CEM for L = 2

and 4.
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3 The Boundary Element Method

The boundary element method (BEM) has many advantages compared to other
domain discretisation methods because it discretises only the boundary to obtain
the unspecified boundary data and the solution in the whole domain, [2,13]. This
reduction makes the number of unknowns, which need to be determined, smaller.
In this section, we will use the BEM to solve the forward problem (1), (2), (5)
and (6) in the unit disk Ω =

{
(x, y) ∈ R2|x2 + y2 < 1

}
. The BEM reduces the

problem to one of solving a linear system of equations

Au′ +Bu = 0, (8)

where u :=
(
u
(
p̃
j

))
j=1,M

, u′ :=
(
∂u
∂n

(
p̃
j

))
j=1,M

, A and B are matrices which

depend solely on the geometry of ∂Ω, and M is the number of boundary ele-
ments. The boundary element endpoint is pj = (xj , yj) =

(
cos
(

2πj
M

)
, sin

(
2πj
M

))
,

for j = 1,M , with the convention that p
0

= p
M

and p̃j is the boundary element
node. For a constant BEM approximation p̃

j
is the midpoint of the segment

Γj = p
j−1

, p
j
. The derivation of this approximation can be briefly summarised in

the following four steps:

1. Find the fundamental solution G(p, p′) of Laplace’s equation satisfying

52G(p, p′) = −δ(p− p′),
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where δ is the Dirac delta function. The fundamental solution which we seek
is based on the distance between p and p′. As a result, in two-dimensions

G(p, p′) = − 1

2π
ln |p− p′| = − 1

2π
ln

√
(x− x′)2

+ (y − y′)2
, (9)

where p = (x, y) and p′ = (x′, y′).

2. Transform Laplace’s equation into the integral equation

η(p)u(p) =

∫
∂Ω

[
G(p, p′)

∂u

∂n
− u(p′)

∂G

∂n
(p, p′)

]
dS, (10)

where

η(p) =


0.5 if p ∈ ∂Ω (smooth)
1 if p ∈ Ω

0 if p /∈ Ω.

This is obtained using the fundamental solution (9) and Green’s identity.

3. Discretise the boundary into small straight line segments Γj for j = 1,M
and assume that the boundary potential u and its normal derivative ∂u

∂n are
approximated by constant functions over each small boundary element Γj .
Via these approximations, the integral equation (10) is expressed as

η(p)u(p) =
M∑
j=1

u′jAj(p)−
M∑
j=1

ujBj(p), (11)

where

Aj(p) =

∫
Γj

G(p, p′)dΓj(p
′)

= − 1

2π

{
h(ln (h/2)− 1) if ab = 0
a cos(β)(ln (a)− ln (b))− h(1− ln (b)) + aψsin(β) if ab 6= 0

Bj(p) =

∫
Γj

∂G

∂n
(p, p′)dΓj(p

′)

=
1

2π


0 if ab = 0 or p ∈ {p

j−1
, p
j
}

ψ sign(αj−1(p)− αj(p)) if y ∈ [yj−1, yj ]
ψ sign(αj(p)− αj−1(p)) otherwise

where sign is the signum function, a = |p− p
j−1
|, b = |p− p

j
|, h = |p

j
− p

j−1
|,

αj−1(p) and αj(p) are the angles between the x-axis and segments p, p
j−1

and p, p
j
, repectively, and the angles ψ and β are given by

ψ = arccos

(
a2 + b2 − h2

2ab

)
, β = arccos

(
a2 + h2 − b2

2ah

)
.
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4. Apply equation (11) at the midpoint nodes p̃i for i = 1,M . This gives the
system of linear algebric equations (8) with the unknowns u and u′. The
system can be rewritten as

M∑
j=1

(Aiju
′
i +Bijui) = 0, i = 1,M, (12)

where A and B are matrices defined by

Aij = Aj(p̃i), Bij = −Bj(p̃i)−
1

2
δij ,

where δij is the Kronecker delta function.

In compact form (12) represents the system of equations (8). Specific boundary
conditions should be imposed to make the resulting system of equations (12) solv-
able. The CEM boundary conditions (2), (5) and (6) will be considered next.

First, we collocate the boundary condition (2) for the electrodes εp, p = 1, L,
at the nodes p̃i, resulting in

ui + zpu
′
i −

2π

M`p

(2K+1)M/(2L)∑
k=(KM/L)+1

uk =
zpIp
`p

,

i = (M + 1 +KM/L), (M + (2K + 1)M/(2L)),
(13)

where K = 0, (L− 1). This yields M/2 equations.

Secondly, by collocating the zero flux boundary condition (5) for the gaps gp,
p = 1, L, between electrodes at the nodes p̃i, we obtain

u′i = 0, i = (M + 1 + (2K − 1)M/(2L)), (M +KM/L), (14)

where K = 1, L. This yields another M/2 equations.
Finally, the condition (6) yields one more equation, namely,

M∑
k=1

uk = 0. (15)

To find the solution of the CEM problem (1), (2), (5) and (6) using the BEM, the
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equations (12)-(15) have been reformulated in the following generic matrix form
as a (2M + 1)× (2M) linear system of algebraic equations:

DX = b, (16)

where

X =

(
u
u′

)
.

Of course, from equations (13) and (14), in principle we could eliminate the current
flux u′ such that (16) can be reduced to a smaller (M + 1) ×M linear system of
algebraic equations. Since the system of equations (16) is over-determined (the
number of equations is greater than the number of unknowns), we can use the
least-squares method to solve it. This yields

X = (DTD)−1DT b. (17)

Once the boundary values have been obtained accurately, equation (11) can be
applied at p ∈ Ω to provide explicitly the interior solution for u(p).

4 The Method of Fundamental Solutions

One of the reasons why the method of fundamental solutions (MFS) is becoming
increasingly popular in various applications is that it is conceptually simple and
easy to describe and implement. The MFS is regarded as a meshless BEM and it
has been used to find the solution of inverse geometric problems governed by the
Laplace’s equation in [14,15].

The MFS seeks a solution of Laplace’s equation (1) as a linear combination of
fundamental solutions of the form:

u(p) =
N∑
j=1

cjG(ξ
j
, p), p ∈ Ω = Ω ∪ ∂Ω, (18)

where ξ
j

are called sources (‘singulaties’) and are located outside Ω, and (cj)j=1,N

are unknown coefficients to be determined by imposing the boundary conditions
(2), (5) and (6). The approximation (18) is justified by the denseness of the set of
these functions, as N → ∞, into the set of harmonic functions, [6]. Note that in
R2 there is an additional constant which has to be included in the expression (18)
in order for the set to be complete, but this constant can usually be taken to be
zero without much loss of generality.

Since Ω is the unit disk, we take the source points

ξ
j

= (ξ1
j , ξ

2
j ) =

(
R cos

(
2πj

N

)
, R sin

(
2πj

N

))
, j = 1, N,
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where 1 < R <∞, and the boundary collocation points

xi =

(
cos

(
2πi

M

)
, sin

(
2πi

M

))
, i = 1,M.

From (9) we have

∂G

∂n
(ξ
j
, p) =

1− (ξ1
jx+ ξ2

j y)

2π|ξ
j
− p|2

, p = (x, y) ∈ ∂Ω, (19)

where ξ
j

= (ξ1
j , ξ

2
j ). In order to obtain the coefficient vector c = (cj)j=1,N , we

substitute equations (9) and (19) into the boundary conditions (2), (5) and (6).
Firstly, we apply the boundary condition (2) for the electrodes εp, p = 1, L, at

the collocation points xi on εp resulting in

N∑
j=1

G(ξ
j
, xi)−

2π

M`p

(2K+1)M/(2L)∑
k=(KM/L)+1

G(ξ
j
, xk) + zp

∂G

∂r
(ξ
j
, xi)

 cj =
zpIp
`p

,

i = (KM/L) + 1, (2K + 1)M/(2L), (20)

where K = 0, (L− 1). This yields M/2 equations.
Secondly, by applying the zero flux boundary condition (5) on the gaps gp, p =

1, L, between electrodes, at the collocation points xi on gp, we obtain

N∑
j=1

cj
∂G

∂r
(ξ
j
, xi) = 0, i = (1 + (2K − 1)M/(2L)), (KM/L), (21)

where K = 1, L. This yields another M/2 equations.

Finally, imposing the condition (6) yields one more equation

M∑
i=1

N∑
j=1

cjG(ξ
j
, xi) = 0. (22)

Again, to find the solution of the CEM problem (1), (2), (5) and (6) using
the MFS, the equations (20)-(22) have been reformulated in the following generic
matrix form as an (M + 1)×N linear system of algebraic equations

Fc = b. (23)
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The least-squares method is used to solve the system of equations (23) if M + 1 ≥
N . This yields

c =
(
FTF

)−1
FT b. (24)

Once the coefficient vector c has been obtained accuratly, equations (18) and
(19) provide explicitly the solution for the potential u in Ω, and the current flux
∂u/∂n on ∂Ω.

5 Numerical Results and Discussion

In this section, we will discuss and compare the numerical solutions of the direct
ERT problem given by equations (1), (2), (5) and (6) obtained using the BEM
and the MFS.

Example 1. For simplicity, choose L = 2 (only two electrodes are attached
to the boundary) and solve the problem (1), (2), (5) and (6) with the following
input data: z1 = z2 = I1 = 1, and I2 = −1.

BEM Solution: The matrix D in equation (16) is given by

Di,l =

{
Bi,l if l = 1,M,

Ai,l if l = (M + 1), 2M,
i = 1,M.

On the other hand, using equations (13)-(15) we obtain:

Di,l =


− h
`1

if (i−M) 6= l, l = 1,M/4,

(1− h
`1

) if (i−M) = l, l = 1,M/4,

0 if l = (M/4 + 1),M,

z1δi,l if l = (M + 1), 2M,

i = (M + 1), (M +M/4),

Di,l =


− h
`2

if (i−M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
`2

) if (i−M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M,

z2δi,l if l = (M + 1), 2M,

i = (M +M/2 + 1), (M + 3M/4),

Di,l = δi,l, if l = (M + 1), 2M,

i = (M +M/4 + 1), (M +M/2) ∪ (M + 3M/4 + 1), 2M.
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The last row in the matrix D is given by

D(2M+1),l =

{
1 if l = 1,M,
0 if l = M + 1, 2M.

Finally, the vector b is given by

b =
(

0 z1I1
`1

0 z2I2
`2

0 0
)T

.

Table 1 illustrates the numerical solutions of the direct problem (1), (2), (5)
and (6) obtained using the BEM with various numbers of boundary elements M .
We only show the solution in the upper semidisk because the solution is symmetric
on the lower semidisk, namely u(x, y) = u(−x,−y) for x ∈ (−1, 1), y ∈ (0, 1). Also,
in Table 1 (as well as Tables 2 and 4 later on) we only show, for the simplicity
of illustration, the results at r ∈ {1, 2, 3, 9}/10. We mention that the numerical
results for the other values of r ∈ {4, ..., 8}/10 have been found to possess similar
features and therefore are not included. From Table 1 it can be seen that using
the BEM to solve the CEM yields a convergent interior solution, as the number of
boundary elements M increases.
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Table 1: The numerical solution of Example 1 at selected interior points (r, θ) obtained
using the BEM for various numbers of boundary elements M ∈ {8, 16, 32, 64, 128, 256}.

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10 M

0.0540 0.0487 0.0247 -0.0085 -0.0386 8
0.0556 0.0502 0.0255 -0.0088 -0.0398 16

1/10 0.0561 0.0508 0.0257 -0.0088 -0.0401 32
0.0562 0.0506 0.0257 -0.0089 -0.0401 64
0.0562 0.0506 0.0257 -0.0089 -0.0402 128
0.0562 0.0507 0.0258 -0.0089 -0.0402 256
0.1083 0.974 0.0491 -0.0169 -0.0769 8
0.1116 0.1004 0.0517 -0.0174 -0.0793 16

2/10 0.1124 0.1011 0.0511 -0.0175 -0.0799 32
0.1126 0.1013 0.0511 -0.0176 -0.0800 64
0.1126 0.1014 0.0512 -0.0176 -0.0801 128
0.1127 0.1014 0.0512 -0.0176 -0.0801 256
0.1632 0.1463 0.0727 -0.0248 -0.1147 8
0.1681 0.1508 0.0751 -0.0257 -0.1184 16

3/10 0.1693 0.1519 0.0757 -0.0259 -0.1193 32
0.1696 0.1521 0.0759 -0.0260 -0.1195 64
0.1697 0.1522 0.0759 -0.0260 -0.1196 128
0.1697 0.1522 0.0759 -0.0260 -0.1196 256

... ... ... ... ... ... ...
0.5051 0.4723 0.1592 -0.0734 -0.3175 8
0.5264 0.4774 0.1793 -0.0565 -0.3440 16

9/10 0.5264 0.4774 0.1793 -0.0565 -0.3440 32
0.5263 0.4772 0.1792 -0.0564 -0.3436 64
0.5264 0.4774 0.1793 -0.0565 -0.3439 128
0.5264 0.4774 0.1793 -0.0565 -0.3440 256

Figures 2 and 3 show the BEM boundary solution for u and its normal deriva-
tive ∂u/∂n, respectively. From these figures it can be seen that the BEM solutions
for both u and ∂u/∂n have rapid convergence on the boundary. So, we can rely
on these results and consider them as the ‘exact solution‘ of the well-posed direct
problem of the CEM of EIT.
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Figure 2: The boundary solution u (1, θ), as a function of θ/(2π), obtained using the
BEM with M ∈ {64, 128, 256}, for Example 1.

Figure 3: The normal derivative ∂u
∂n

(1, θ), as a function of θ/(2π), obtained using the
BEM with M ∈ {64, 128, 256}, for Example 1.

Figure 4 shows the resulting voltage Up, p = 1, 2, obtained from (4). In this
figure the top part illustrates that the voltage is indeed constant and equal to
U1 ≈ 1.1738, whilst the bottom one indicates that U2 ≈ −1.1738. We mention
that these voltages are the quantities which are measured on the first and second
electrodes in the inverse ERT problem.
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Figure 4: The voltages Up, p = 1, 2, as functions of θ/(2π), obtained using the BEM
with M ∈ {64, 128, 256}, for Example 1.

MFS solution: We now solve the problem (1), (2), (5) and (6) for Example 1
using the MFS instead of the BEM.

To begin with, the first M/4 rows of the matrix F in equation (23) corespond-
ing to the first electrode ε1 are

Fi,j = Gi,j −
2π

M`1

(
Gi,j +Gi+1,j + ...+GM/4,j

)
+ z1G

′
i,j , i = 1,M/4, j = 1, N,

where Gi,j = G(ξj , xi) and G′i,j = ∂G
∂n (ξj , xi). Another M/4 rows in the matrix

F are generated by applying the boundary condition (20) on the second electrode
ε2, namely

Fi,j = Gi,j −
2π

M`2

(
G(M/2+1),j +G(M/2+2),j + ...+G3M/4,j

)
+ z2G

′
i,j ,

i = (M/2 + 1), 3M/4, j = 1, N.

In addition, applying the no flux boundary condition (21) results in another M/2
rows given by

Fi,j = G′i,j , i = (M/4 + 1),M/2 ∪ (3M/4 + 1),M, j = 1, N.

To end with, the last row in the matrix F obtained from the condition (22) is:

F(M+1),j =
M∑
i=1

Gi,j , j = 1, N.
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Similarly, the vector b of the linear system of equations (23) is given by

b =
(
z1I1
`1

0 z2I2
`2

0 0
)T

.

Table 2 illustrates the numerical solutions of the problem (1), (2), (5) and (6)
obtained using the MFS with various M = N and R = 1.15. From this table it
can be seen that using the MFS to solve the CEM provides a convergent interior
solution. However, by inspecting Tables 1 and 2 it can be seen that this conver-
gence is slightly slower in the MFS than in the BEM, as M = N increases.

Table 2: The numerical solution of Example 1 at selected interior points (r, θ) obtained
using the MFS for various M = N ∈ {8, 16, 32, 64, 128, 256} and R = 1.15.

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10 M

0.1316 0.1225 0.0619 -0.0213 -0.0968 8
0.0731 0.0658 0.0334 -0.0115 -0.0227 16

1/10 0.0578 0.0521 0.0265 -0.0091 -0.0413 32
0.0562 0.0507 0.0257 -0.0088 -0.0401 64
0.0562 0.0506 0.0257 -0.0088 -0.0401 128
0.0561 0.0506 0.0257 -0.0088 -0.0401 256
0.1466 0.1318 0.0664 -0.0227 -0.1040 8
0.2740 0.2457 0.1216 -0.0422 -0.1909 16

2/10 0.1160 0.1043 0.0526 -0.0180 -0.0824 32
0.1127 0.1014 0.0512 -0.0175 -0.0801 64
0.1126 0.1013 0.0511 -0.0175 -0.0801 128
0.1126 0.1013 0.0511 -0.0175 -0.0800 256
0.4144 0.3704 0.1777 -0.0422 -0.1909 8
0.2210 0.1981 0.0982 -0.0335 -0.1552 16

3/10 0.1747 0.1567 0.0781 -0.0267 -0.1230 32
0.1698 0.1523 0.0759 -0.0259 -0.1197 64
0.1697 0.1522 0.0759 -0.0259 -0.1196 128
0.1696 0.1522 0.0759 -0.0259 -0.1195 256

... ... ... ... ... ... ...
1.2972 1.1393 0.4321 -0.4131 -0.1860 8
0.9671 0.5922 0.1302 -0.0360 -0.3042 16

9/10 0.5478 0.4905 0.1825 -0.0572 -0.3505 32
0.5270 0.4783 0.1791 -0.0564 -0.3439 64
0.5265 0.4775 0.1792 -0.0564 -0.3439 128
0.5263 0.4773 0.1792 -0.0564 -0.3437 256

Figures 5 and 6 show comparisons between the BEM and MFS solutions for
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the boundary data u(1, θ) and ∂u/∂n(1, θ), respectively. In these figures the mark-
ers are shown only on a coarse selection of boundary points in order to allow the
curves to be distinguishable. In the MFS, we present the results obtained with
R = 1.15 which is the optimal choice for which the numerical MFS results are the
closest to the BEM results. In the absence of these latter numerical results, or of
an analytical solution being available one could still optimize the choice of R by
minimizing (with respect to R) the error in satisfying, in a least-squares sense, the
boundary conditions (2), (5) and (6) at points on the boundary different than the
collocation points (xi)i=1,M . The reason why R is close to unity is because the
boundary value problem possesses singularities in the normal derivative, see Fig-
ure 5, at the end points of electrodes where the Robin boundary condition (3) and
the Neumann boundary condition (5) mix. This in turn means that the harmonic
solution u cannot be analytically continued too far outside the unit disk Ω and the
MFS approximation (18) is accurate only provided that the sources (ξ

j
)j=1,N are

positioned on a circle of radius R > 1 such that there are no singularities in u in
the circular annulus {(x, y)2 ∈ R2|1 < x2 +y2 < R2}. From Figure 5 it can be seen
that there is excellent agreement between the BEM and MFS numerical solutions
except for the coarse meshes/degrees of freedom of 8 to 16 elements. However,
increasing the number of collocation points M and the degrees of freedom N , both
u(1, θ) and its derivative ∂u/∂n(1, θ) show good agreement with the BEM solu-
tion. Furthermore, the MFS gives the closest agreement to the BEM results with
M = N = 128 and R = 1.15. However, for the large choice of M = N = 256,
the MFS shows some slight instability in the normal derivative, see Figure 6. This
instability is due to the ill-conditioning of the matrix F which is commonly known
with the MFS, see [7, 17,21].
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Figure 5: Comparison between uMFS (1, θ) and uBEM (1, θ), as functions of θ/(2π), for
Example 1.
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Figure 6: Comparison between ∂u
∂n

MFS
(1, θ) and ∂u

∂n

BEM
(1, θ), as functions of θ/(2π),

for Example 1.

Table 3 shows the condition numbers, defined as the ratio between the largest
singular value to the smallest one, of the BEM and MFS matrices D and F , re-
spectively. This table shows that the BEM matrix D is well-conditioned, but the
MFS matrix F is ill-conditioned.
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Table 3: Condition numbers of the matrices D and F of the BEM and MFS systems of
equations (16) and (23), respectively, for various numbers of boundary elements M (in
the BEM) and degrees of freedom M = N (in the MFS with R = 1.15), for Example 1.

M = N 8 16 32 64 128 256
cond(D) 35.58 86.62 215.97 484.40 103 2× 103

cond(F ) 3× 1016 5× 1016 3× 1017 7× 1016 2× 1017 4× 1018

Example 2. We next automate both the BEM and MFS computational codes
(increasing the number of electrodes to L = 4 and 8) to solve the CEM problem
(1), (2), (5) and (6) with the input data zp = 1 for p = 1, L and injected currents

Ip =

 1 if p = 1,
−1 if p = L,
0 if p ∈ {2, ..., L− 1}.

(25)

Solution: If we choose L = 2, we just re-obtain Example 1. Although the com-
putational code of the problem (written in MATLAB) is valid for any number of
electrodes L, only two cases will be illustrated here. These cases are L = 4 and
L = 8.

Table 4 shows the numerical MFS and BEM interior solutions and the abso-
lute errors between them. It can be seen that for both L = 4 and L = 8, the
MFS and the BEM interior solutions agree up to three decimal places. In addi-
tion, the accuracy increases as we move further towards the centre of the unit disk.
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Table 4: The BEM numerical solution (with M = 128) of Example 2 at the some
interior points and (in brackets) the absolute errors between the BEM and MFS (with
M = N = 128).

L = 4

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10

1/10
0.0394 0.0426 0.0301 0.0088 -0.0146

(1× 10−5) (1× 10−5) (8× 10−6) (2× 10−6) (3× 10−6)

2/10
0.0841 0.0836 0.0551 0.0156 -0.0259

(3× 10−5) (2× 10−5) (1× 10−5) (3× 10−6) (5× 10−6)

3/10
0.1340 0.1223 0.0752 0.0207 -0.0345

(5× 10−5) (3× 10−5) (1× 10−5) (3× 10−6) (5× 10−6)

...
... ... ... ... ...

9/10
0.5723 0.2593 0.1216 0.0330 -0.0560

(4× 10−4) (3× 10−5) (3× 10−5) (3× 10−6) (8× 10−6)
L = 8

r
θ

2π/10 4π/10 6π/10 8π/10 10π/10

1/10
0.0199 0.0242 0.0191 0.0085 -0.0039

(7× 10−6) (7× 10−6) (4× 10−6) (2× 10−6) (9× 10−7)

2/10
0.0449 0.0484 0.0347 0.0147 -0.0067

(1× 10−5) (1× 10−5) (7× 10−6) (2× 10−6) (1× 10−6)

3/10
0.0752 0.0714 0.0469 0.0191 -0.0087

(2× 10−5) (1× 10−5) (7× 10−6) (2× 10−6) (1× 10−6)

...
... ... ... ... ...

9/10
0.3099 0.1451 0.0748 0.0276 -0.0127

(1× 10−4) (1× 10−5) (4× 10−6) (4× 10−7) (2× 10−6)

Figures 7 and 8 represent the comparison on the boundary for L = 4 and 8,
respectively. From these figures it can be seen that both methods still follow the
same pattern as for the case L = 2.
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Figure 7: Comparison between the MFS and BEM solutions and their normal derivatives
on the boundary when the number of electrodes is L = 4.

Figure 8: Comparison between the MFS and BEM solutions and their normal derivatives
on the boundary when the number of electrodes is L = 8.

6 Extension to Multiply-Connected Domains

So far, the solution domain Ω (unit disk), which has been considered, was a simply-
connected domain. In this section, we will investigate the direct EIT problem in
a domain which has a void (rigid inclusion or cavity) inside.
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6.1 Applying the BEM to the Direct EIT Problem in an
Annular Domain with a Rigid Inclusion

Here, the solution domain Ω is the annulus
{

(x, y) ∈ R2|(0.5)2 < x2 + y2 < 1
}
,

where on the boundary of the hole inside (rigid inclusion), the boundary condition
is u = 0.

First, the external boundary r = 1 is uniformly discretised into M bound-
ary elements and the numbering of these elements is anticlockwise. Similarly,
the internal boundary r = 0.5 is uniformly discretized into another M bound-
ary elements, but these are numbered clockwise, [22]. The endpoints of external
boundary elements are

pi = (xi, yi) =

(
cos

(
2πi

M

)
, sin

(
2πi

M

))
, i = 1,M,

with the convention that p
0

= p
M

, whereas the endpoints of internal boundary
elements are

pi = (xi, yi) =

(
0.5 cos

(
2π − 2π(i−M)

M

)
, 0.5 sin

(
2π − 2π(i−M)

M

))
,

i = M + 1, 2M.

Since u = 0 on the boundary of the inner rigid inclusion, the EIT problem is
reduced to solving a new linear system of BEM equations

BuOuter +Au′ = 0, (26)

where u :=
(
u
(
p̃i
))
i=1,M

, and u′ :=

(
u′Outer
u′Inner

)
:=

( ∂u
∂n (p̃

i
)i=1,M

∂u
∂n (p̃

i
)i=M+1,2M

)
. We also

denote the boundary element node p̃i = (pi + pi−1) /2 for i = 1,M ∪M + 2, 2M ,
and p̃M+1 = (pM+1 + p2M ) /2.

First, we collocate the boundary condition (2) for the electrodes εp, p = 1, L,
at the nodes p̃i−2M , resulting in

ui−2M + zpu
′
i−2M −

2π

M`p

(2K+1)M/(2L)∑
k=(KM/L)+1

uk =
zpIp
`p

,

i = (2M + 1 +KM/L), (2M + (2K + 1)M/(2L), (27)

where K = 0, (L− 1). This yields M/2 equations.
Second, by applying the zero flux boundary condition (5) for the gaps gp,

p = 1, L, between electrodes at the nodes p̃i−2M , we obtain

u′i−2M = 0, i = (2M + 1 + (2K − 1)M/(2L)), (2M +KM/L), (28)
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where K = 1, L. This yields another M/2 equations.
Finally, the condition ∫

∂Ωouter

u ds = 0

yields one more equation, namely,

M∑
k=1

uk = 0. (29)

Therefore, to find the solution of the CEM problem (1), (2), (5) and (6) in an
annular domain containing an inner rigid inclusion using the BEM, the equations
(27)-(29) are reformulated in the following matrix form as a (3M + 1) × (3M)
linear system of algebraic equations:

DX = b, (30)

where

X =

uOuter
u′Outer
u′Inner

 . (31)

Since the system of equations (30) is over-determined, we have used the least-
squares method to solve it. This yields the solution (17) for the unspecified bound-
ary data (31).

Once the boundary data has been obtained accurately, equation (11) can be
applied for p ∈ Ω to provide explicitly the interior solution for u(p).

6.2 Applying the MFS to the Direct EIT Problem in an
Annular Domain with a Rigid Inclusion

In this section, the MFS seeks a solution of Laplace’s equation (1) as a linear
combination of fundamental solutions of the form:

u(p) =
2N∑
j=1

cjG(ξ
j
, p), p ∈ Ω. (32)

where ξ
j

are the sources and located outside the outer domain

ΩOuter =
{

(x, y) ∈ R2|x2 + y2 = 1
}

and inside the rigid inclusion

ΩInner =
{

(x, y) ∈ R2|x2 + y2 = (0.5)2
}
,
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where Ω = ΩOuter\ ΩInner. The (cj)j=1,2N are unknown coefficients to be deter-
mined by imposing the boundary conditions (2), (5), (6) and

u = 0 on ∂ΩInner. (33)

Since Ω = ΩOuter\ ΩInner = B(0; 1)\B(0; 0.5), we take the external source points
ξ
j

= (ξ1
j , ξ

2
j ) = (R cos

(
2πj
N

)
, R sin

(
2πj
N

)
) for j = 1, N , where 1 < R < ∞, the

internal source points ξ
j

= (ξ1
j , ξ

2
j ) = (R1 cos

(
2π(j−N)

N

)
, R1 sin

(
2π(j−N)

N

)
), for

j = N + 1, 2N , where 0 < R1 < 0.5. We also take the external boundary colloca-
tion points xi = (cos

(
2πi
M

)
, sin

(
2πi
M

)
) for i = 1,M , and the internal boundary col-

location points xi =
(

0.5 cos
(

2π(j−M)
M

)
, 0.5 sin

(
2π(j−M)

M

))
for i = M + 1, 2M .

For external points p = (x, y) ∈ ∂ΩOuter we have

∂G

∂n
(ξ
j
, p) =

1− (ξ1
jx+ ξ2

j y)

−2π|ξ
j
− p|2

, j = 1, 2N, (34)

whilst for internal points p = (x, y) ∈ ∂ΩInner we have

∂G

∂n
(ξ
j
, p) =

(0.5)2 − (ξ1
jx+ ξ2

j y)

−2(0.5)π|ξ
j
− p|2

, j = 1, 2N. (35)

In order to obtain the coefficient vector c = (cj)j=1,2N , we substitute equations
(9), (34), and (35) into the boundary conditions (2), (5), (6) and (33).

First, we apply the boundary condition (2) for the electrodes εp, p = 1, L, at
the collocation points xi on εp resulting in

2N∑
j=1

G(ξ
j
, xi)−

2π

M`p

(2K+1)M/(2L)∑
k=(KM/L)+1

G(ξ
j
, xk) + zp

∂G

∂r
(ξ
j
, xi)

 cj =
zpIp
`p

,

i = (KM/L) + 1, (2K + 1)M/(2L), (36)

where K = 0, (L− 1). This yields M/2 equations.
Second, by applying the zero flux boundary condition (5) on the gaps gp, p =

1, L, between electrodes, we obtain

2N∑
j=1

cj
∂G

∂r
(ξ
j
, xi) = 0, i = (1 + (2K − 1)M/(2L)), (KM/L). (37)

where K = 1, L. This yields another M/2 equations.
Third, we apply (33) which gives M more equations

2N∑
j=1

cjG(ξj , xi) = 0, i = M + 1, 2M. (38)
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Finally, by imposing the condition (6) and using (38), yields one more equation

2M∑
i=1

2N∑
j=1

cjG(ξ
j
, xi) = 0. (39)

Again, to find the solution of the CEM problem (1), (2), (5), (6) and (33) using
the MFS, the equations (36)-(39) are reformulated in the following matrix form as
a (2M + 1)× 2N linear system of algebraic equations:

Fc = b. (40)

The least-squares method is used to solve the system of equations (40). This yields
the solution (24).

Once the coefficient vector c has been obtained accurately, equations (32), (34)
and (35) provide explicitly the solution for the potential uOuter on the external
boundary ∂ΩOuter and inside the annular domain Ω, the current flux (∂u/∂n)Outer
on the external boundary ∂ΩOuter and the current flux (∂u/∂n)Inner on the in-
ternal boundary ∂ΩInner, respectively.

Example 3. Solve the problem (1), (2), (5), (6) and (33) using the BEM and
MFS with the same input data as in Example 1.

BEM solution: The matrix D in equation (30) is given by

Di,l =

{
Bi,l if l = 1,M,

Ai,l if l = (M + 1), 3M,
i = 1, 2M.

On the other hand, using equations (27)-(29) we obtain:

Di,l =


− h
`1

if (i− 2M) 6= l, l = 1,M/4,

(1− h
`1

) if (i− 2M) = l, l = 1,M/4,

0 if l = (M/4 + 1),M ∪ (2M + 1), 3M,

z1δi,l if l = (M + 1), 2M,

i = (2M + 1), (2M +M/4),

Di,l =


− h
`2

if (i− 2M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
`2

) if (i− 2M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M ∪ (2M + 1), 3M,

z2δi,l if l = (M + 1), 2M,

i = (2M +M/2 + 1), (2M + 3M/4),
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Di,l = δi,l, if l = (M + 1), 2M,

i = (2M +M/4 + 1), (M +M/2) ∪ (2M + 3M/4 + 1), 3M.

The last row in the matrix D is given by

D(3M+1),l =

{
1 if l = 1,M,
0 if l = M + 1, 3M.

Furthermore, the vector b is given by

b =
(

0 z1I1
`1

0 z2I2
`2

0 0
)T

. (41)

MFS solution: Turning now to the MFS solution, the first M/4 rows of the
matrix F in equation (40) coresponding to the first electrode ε1 are

Fi,j = Gi,j−
2π

M`1

(
Gi,j +Gi+1,j + ...+GM/4,j

)
+z1G

′
i,j , i = 1,M/4, j = 1, 2N.

Another M/4 rows in the matrix F are generated by applying the boundary con-
dition (2) on the second electrode ε2, namely

Fi,j = Gi,j −
2π

M`2

(
G(M/2+1),j +G(M/2+2),j + ...+G3M/4,j

)
+ z2G

′
i,j ,

i = (M/2 + 1), 3M/4, j = 1, 2N.

In addition, applying the no flux boundary condition (5) results in another M/2
rows given by

Fi,j = G′i,j , i = (M/4 + 1),M/2 ∪ 3M/4 + 1, j = 1, 2N.

Moreover, another M rows are generated from applying the inner boundary con-
dition (33), namely,

Fi,j = Gi,j , i = (M + 1), 2M, j = 1, 2N.

To end with, the last row in the matrix F obtained using equation (39) is:

F(M+1),j =
2M∑
i=1

Gi,j , j = 1, 2N.
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The vector b of the linear system of equations (40) is given by

b =
(
z1I1
`1

0 z2I2
`2

0 0
)T

. (42)

In the MFS we take R = 1.15 and R1 = 0.45. Figures 9, 10 and 11 present a
comparison between the BEM and MFS solutions for the boundary data uOuter(1, θ),
(∂u/∂n)Outer(1, θ) and (∂u/∂n)Inner(0.5, θ), respectively. From these figures it
can be seen that the BEM outer solution and its derivative, as well as the BEM
inner derivative are convergent, as the number of boundary elements M increases.
This is also true when the MFS is used except for M = N = 256, where the outer
solution still has a reasonable accuracy, but the normal derivative on the inner
boundary becomes highly unstable, see also Table 5 for the condition numbers.

Figure 9: Comparison between uMFS
Outer (1, θ) and u

BEM
Outer (1, θ), as functions of θ/(2π), for

Example 3.
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Figure 10: Comparison between ( ∂u
∂n

)MFS
Outer (1, θ) and ( ∂u

∂n
)BEM
Outer (1, θ), as functions of

θ/(2π), for Example 3.
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Figure 11: Comparison between ( ∂u
∂n

)MFS
Inner (0.5, θ) and ( ∂u

∂n
)BEM
Inner (0.5, θ) , as functions

of θ/(2π), for Example 3.
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Table 5: Condition numbers of the matrices D and F of the BEM and MFS systems of
equations (30) and (40), respectively, for various numbers of boundary elements M (in
the BEM) and degrees of freedom M = N (in the MFS with R = 1.15 and R1 = 0.45),
for Example 3.

8 16 32 64 128 256
cond(D) 2× 103 104 105 7× 105 6× 106 5× 107

cond(F ) 1017 6× 1018 2× 1018 5× 1018 4× 1017 2× 1019

6.3 Applying the BEM to the Direct EIT Problem in an
Annular Domain with a Cavity

Herein, the solution domain Ω is the same annulus as in Section 6.1, but now it
contains a cavity inside on whose boundary ∂u/∂n = 0.

The BEM implementation is the same as that for the rigid inclusion of Section
6.1, however now the BEM reduces to solving the system of equations

Bu+Au′Outer = 0, (43)

where u :=

(
uOuter
uInner

)
:=

(
u(p̃

i
)i=1,M

u(p̃
i
)i=M+1,2M

)
, and u′Outer :=

(
∂u
∂n

(
p̃i
))
i=1,M

.

Equations (27)-(29) remain the same. Therefore, to find the solution of the CEM
(1), (2), (5) and (6) in an annular domain with a cavity using the BEM, the
equations (27)-(29) and (43) are reformulated in the following matrix form as a
(3M + 1)× (3M) linear system of algebraic equations:

DX = b, (44)

where

X =

uOuter
u′Outer
uInner

 . (45)

Since the system of equations (44) is over-determined, we have used the least-
squares method to solve it. This yields the solution (17) for the unspecified
boundary data (45). Afterwards, equation (11) can be applied for p ∈ Ω to provide
explicitly the interior solution for u(p).

6.4 Applying the MFS to the Direct EIT Problem in an
Annular Domain with a Cavity

Using the MFS to solve the forward EIT problem in a region which contains a
cavity inside is similar to solving the problem with the rigid inclusion of section 6.2.
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The only difference is the the internal Dirichlet homogenous boundary condition
(33) is replaced by the zero flux boundary condition

∂u

∂n
= 0 on ∂ΩInner. (46)

Hence,

2N∑
j=1

cj
∂G

∂n
(ξj , xi) = 0, i = M + 1, 2M. (47)

Due to this change, the rows

Fi,j = G′i,j , i = (M + 1), 2M, j = 1, 2N,

will be updated in the new matrix F .

Example 4. Solve the problem (1), (2), (5), (6) and (46) using the BEM and
MFS with the same input data as in Example 1.

Solution: The matrix D in equation (44) has the same structure as for Example
3, but the last row is given by

D(3M+1),l =

{
1 if l = 1,M ∪ 2M + 1, 3M,
0 if l = M + 1, 2M.

Furthermore, the vector b is the same as that given by (41).
Figures 12, 13 and 14 present a comparison between the BEM and MFS solu-

tion for the boundary data uOuter(1, θ) and (∂u/∂n)Outer(1, θ) and uInner(0.5, θ),
respectively. First, from Figures 12 and 13 the same conclusions, as those ob-
tained from Figures 9 and 10 for the rigid inclusion problem of Example 3, can be
drawn for the cavity problem of Example 4. Second, for the large M = N = 256,
the MFS instability manifested in retrieving the normal derivative on the inner
boundary of the rigid inclusion highlighted in Figure 11 is not present in Figure
14 which shows the function u on the inner boundary of the cavity. The reason
for this is that retrieving higher order derivatives is less accurate and less stable
than retrieving lower order ones, [19].
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Figure 12: Comparison between uMFS
Outer (1, θ) and uBEM

Outer (1, θ), as functions of θ/(2π),
for Example 4.
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Figure 13: Comparison between ( ∂u
∂n

)MFS
Outer (1, θ) and ( ∂u

∂n
)BEM
Outer (1, θ) , as functions of

θ/(2π), for Example 4.
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Figure 14: Comparison between uMFS
Inner (0.5, θ) and u

BEM
Inner (0.5, θ), as functions of θ/(2π),

for Example 4.

Table 6 shows the condition numbers of the BEM and MFS matrices D and
F , respectively. This table shows that the BEM matrix D is well-conditioned, but
the MFS matrix F is ill-conditioned.

Table 6: Condition numbers of the matrices D and F of the BEM and MFS systems
of equations, for various numbers of boundary elements M (in the BEM) and degrees of
freedom M = N (in the MFS with R = 1.15 and R1 = 0.45), for Example 4.

8 16 32 64 128 256
cond(D) 311.91 643.53 103 2× 103 5× 103 ×104

cond(F ) 2× 1017 5× 1016 1018 9× 1017 5× 1017 1018
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7 Extention to Composite Materials

In this section, the solution domain is represented by a bi-material Ω = Ω1 ∪ Ω2,
where Ω1 =

{
(x, y) ∈ R2|(0.5)2 < x2 + y2 < 1

}
and

Ω2 =
{

(x, y) ∈ R2|x2 + y2 < (0.5)2
}

. So, the mathematical formulation of this
problem is governed by two Laplace’s equations, one in each of the two-dimenisonal
bounded domains Ω1 and Ω2. The first equation is

52u1 = 0, in Ω1 (48)

subject to the same boundary conditions (2) and (5) which make the problem the
so-called ‘complete-electrode model‘ (CEM), but equation (6) is replaced by∫

∂ΩOuter

u ds = 0, (49)

where ∂ΩOuter =
{

(x, y) ∈ R2|x2 + y2 = 1
}
. The second Laplace’s equation is

52u2 = 0, in Ω2 (50)

subject to the following transmission conditions on the interface Ω1 ∩ Ω2 = ∂Ω2:

u1 = u2 (51)

and

∂u1

∂n1
= −γ ∂u2

∂n2
(52)

where n1 is the outward unit normal to the boundary ∂Ω1 of the material Ω1 and
n2 = −n1 is the outward unit normal to the boundary ∂Ω2 of the material Ω2,
and 0 < γ 6= 1 < ∞ is the ratio between the two conductivities of the materials
Ω2 and Ω1. In the formulation above, Ω2 is defined as a general inclusion and the
geometry of the whole inclusion EIT problem is shown in Figure 15. The previous
cases (simply-connected and multiply-connected) of Sections 5 and 6 could be
considered as special cases of this composite material case, since:

(i) if γ = 1, then the two composite material case becomes the simply-connected
domain of Section 5.

(ii) if γ =∞, then the two composite material case becomes the annular domain
with a rigid inclusion of Section 6.1.

(iii) if γ = 0, then the two composite material case becomes the annular domain
with a cavity of Section 6.2.
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Figure 15: The two-dimensional CEM in a composite domain, for L = 2 and 4 electrodes.
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7.1 Applying the BEM to the Direct EIT Problem in a
Composite Bi-material

In this section, we will use the BEM to solve the inclusion EIT problem given
by equations (2), (5), (48)-(52). For the first domain Ω1, the discretisation of
the boundary ∂Ω1, is the same as in Section 6.1. Hence, the BEM reduces the
Laplace’s equation (48) for u1 to a new linear system of equations similar to (26),
namely,

Bu1 +Au′1 = 0, (53)

where u1 :=

(
u1Outer
u1Inner

)
:=

(
u1(p̃

i
)i=1,M

u1(p̃
i
)i=M+1,2M

)
and u′1 :=

(
u′1Outer
u′1Inner

)
:=

(
∂u1

∂n1
(p̃
i
)i=1,M

∂u1

∂n1
(p̃
i
)i=M+1,2M

)
. Equation (53) provides the first

2M rows of the matrix D.
Now, for the second domain Ω2 we discretise the internal boundary ∂Ω2 into M

boundary elements, directed anticlockwise. Hence, the BEM reduces the second
Laplace’s equation (50) for u2 to a new linear system of equations, similar to (8),
namely,

B̃u2 + Ãu′2 = 0, (54)

where u2 = (u2(p̃2M+1−i))i=M+1,2M and u′2 =
(
∂u2

∂n2
(p̃2M+1−i)

)
i=M+1,2M

. Col-

locating the interface transmission conditions (51) and (52) at the corresponding
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boundary element nodes and using (54) we obtain

B̃
(
u1

)
Inner

− 1

γ
Ã
(
u′1

)
Inner

= 0. (55)

Equations (53) and (55) from a system of 3M equations with 4M unkowns. In
order to make this system of equations uniquely solvable the conditions (2), (5)
and (49) should be imposed on the outer boundary. To begin with, we collocate
the boundary condition (2) for the electrodes εp, p = 1, L, at the nodes p̃(i−3M),
resulting in

u1(i−3M) + zpu
′
1(i−3M) −

2π

M`p

(2K+1)M/(2L)∑
k=(KM/L)+1

u1k =
zpIp
`p

,

i = (3M + 1 +KM/L), (3M + (2K + 1)M/(2L), (56)

where K = 0, (L− 1). This yields M/2 equations.

Second, by applying the zero flux boundary condition (5) on the gaps gp,
p = 1, L, between electrodes, we obtain

u′1(i−3M) = 0, i = (3M + 1 + (2K − 1)M/(2L)), (3M +KM/L), (57)

where K = 1, L. This yields another M/2 equations.
Finally, the condition (6) yield one more equation, namely,

M∑
k=1

u1k = 0. (58)

Therefore, to find the solution of the CEM given by equations (2), (5) and (48)-
(52) in a composite material using the BEM, the equations (53), (55) and (56)-(58)
are reformulated in the following matrix form as a (4M + 1)× (4M) linear system
of algebraic equations:

DX = b, (59)

where

X =


uOuter
uInner
u′Outer
u′Inner

 . (60)

Since the system of equations (59) is over-determined, we have used the least-
squares method to solve it. This yields the solution (17) for the unspecified bound-
ary data (60).
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7.2 Applying the MFS to the Direct EIT Problem in a Com-
posite Bi-material

In this section, the MFS for the Laplace’s equations (48) and (50) in the composite
material Ω = Ω1 ∪ Ω2 is applied by seeking a solution of Laplace’s equation (48)
as a linear combination of fundamental solutions of the form:

u1(p) =
2N∑
j=1

cjG(ξ
j
, p), p ∈ Ω1, (61)

where the sources ξ
j

and the collocation points xi are exactly the same as in Section

6.2, and by seeking a solution of Laplace’s equation (50) as a linear combination
of fundamental solutions of the form:

u2(p) =
3N∑

j=2N+1

cjG(ξ
j
, p), p ∈ Ω2. (62)

Similar domain decompositions for composite materials have been developed in
[3–5] for the steady-state heat conduction governed by Laplace’s equation, for the
steady-state heat transfer in a fin governed by the modified Helmholtz equation,
and for the steady-state elasticity governed by the Lamé system, respectively.

In (62), the sources ξ
j

are located outside ΩInner, so

ξ
j

= (ξ1
j , ξ

2
j ) =

(
R2 cos

(
2π(j − 2N)

N

)
, R2 sin

(
2π(j − 2N)

N

))
, j = 2N + 1, 3N,

where 0.5 < R2 <∞, and the new internal boundary collocation points are

xi =

(
0.5 cos

(
2π(i− 2M)

M

)
, 0.5 sin

(
2π(i− 2M)

M

))
, i = 2M + 1, 3M.

In order to obtain the coefficient vector c = (cj)j=1,3N , we substitute equations (9),
(34), and (35) into the boundary conditions. To begin with, applying the boundary
condition (2) results in equation (36), which in turn yields M/2 equations. In
addition, applying the zero flux boundary condition (5) we obtain (38). This
yields an additional M/2 equations.

Using the transmission conditions (51) and (52) results in

2N∑
j=1

cjG(ξj , xi)−
3N∑

j=2N+1

cjG(ξj , xi) = 0, i = M + 1, 2M (63)

and

2N∑
j=1

cjG
′(ξj , xi)− K̂

3N∑
j=2N+1

cjG
′(ξj , xi) = 0, i = 2M + 1, 3M, (64)
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respectively. These give 2M equations.
Finally, by imposing the condition (49), yields one more equation

2M∑
i=1

2N∑
j=1

cjG(ξ
j
, xi) = 0. (65)

Again, to find the solution of the CEM problem (2), (5) and (48)-(52) using
the MFS, the equations (61)-(65) are reformulated in the following matrix form as
a (3M + 1)× 3N linear system of algebraic equations:

Fc = b. (66)

The least-squares method is used to solve the system of equations (66). This yields
the solution (24).

Example 5. Solve the problem (2), (5) and (48)-(52) using the BEM and MFS
with the same input data as in Example 1 and γ = 2.

BEM solution: The matrix D in equation (59) is given by

Di,l =

{
Bi,l if l = 1, 2M,

Ai,l if l = (2M + 1), 4M,
i = 1, 2M,

and

Di,l =


B̃i,l if l = M + 1, 2M,

Ãi,l if l = (3M + 1), 4M,

0 if l = 1,M(2M + 1), 3M,

i = (2M + 1), 3M.

On the other hand, using equations (56)-(58) we obtain

Di,l =


− h
`1

if (i− 3M) 6= l, l = 1,M/4,

(1− h
`1

) if (i− 3M) = l, l = 1,M/4,

0 if l = (M/4 + 1), 2M ∪ (3M + 1), 4M,

z1δi,l if l = (2M + 1), 3M,

i = (3M + 1), (3M +M/4),

Di,l =


− h
`2

if (i− 3M) 6= l, l = (M/2 + 1), 3M/4,

(1− h
`2

) if (i− 3M) = l, l = (M/2 + 1), 3M/4,

0 if l = 1,M/2 ∪ (3M/4 + 1),M ∪ (3M + 1), 4M,

z2δi,l if l = (2M + 1), 3M,

i = (3M +M/2 + 1), (3M + 3M/4),

Di,l = δi,l, if l = (2M + 1), 3M,
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i = (3M +M/4 + 1), (M +M/2) ∪ (2M + 3M/4 + 1), 4M.

The last row in the matrix D is given by

D(4M+1),l =

{
1 if l = 1,M,
0 if l = M + 1, 4M.

Furthermore, the vector b is given by (41).

MFS solution: Turning now to the MFS solution, the first M rows of the matrix
F in equation (66) are the same as those of the matrix F in Example 1. Moreover,
another M rows are generated by applying the inner boundary condition (64),
namely,

Fi,j = Gi,j , i = (M + 1), 2M, j = 1, 2N,

Fi,j = −Gi,j−N , i = (M + 1), 2M, j = 2N + 1, 3N.

Another M rows in the matrix F are obtained from (64) as

Fi,j = G′i,j , i = (2M + 1), 3M, j = 1, 2N,

Fi,j = 2G′i,j−N , i = (2M + 1), 3M, j = 2N + 1, 3N.

Finally, the last row in the matrix F is obtained from (65) as

F(3M+1),j =

2M∑
i=1

Gi,j , j = 1, N,

F(3M+1),j = 0, j = N + 1, 3N.

Similarly, the vector b of the linear system of equations (66) is given by (43).
In the MFS we take R = 1.15, R1 = 0.45 and R2 = 0.55.

Figures 16-19 present a comparison between the BEM and MFS solutions for
the boundary data uOuter(1, θ), uInner(0.5, θ), (∂u/∂n)Outer(1, θ) and
(∂u/∂n)Inner(0.5, θ), respectively. The same conclusions as in Example 3 can be
drawn by observing these figures.
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Figure 16: Comparison between uMFS
Outer (1, θ) and uBEM

Outer (1, θ), as functions of θ/(2π),
for Example 5.
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Figure 17: Comparison between uMFS
Inner (0.5, θ) and u

BEM
Inner (0.5, θ), as functions of θ/(2π),

for Example 5.
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Figure 18: Comparison between ( ∂u
∂n

)MFS
Outer (1, θ) and ( ∂u

∂n
)BEM
Outer (1, θ), as functions of

θ/(2π), for Example 5.
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Figure 19: Comparison between ( ∂u
∂n

)MFS
Inner (0.5, θ) and ( ∂u

∂n
)BEM
Inner (0.5, θ) , as functions

of θ/(2π), for Example 5.

8 Conclusions

This study has applied and compared the BEM and MFS to solve the complete-
electrode model (CEM) problem of ERT. These two numerical methods were ex-
amined for various simply and multiply-connected domains with various homo-
geneous boundary conditions on the inner boundary in the latter case. Due to
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the lack of an analytical solution, the BEM solution has been considered as the
exact solution because it is more accurate than the one obtained using the MFS
which gives some instability when the degrees of freedom become too large. The
boundary integrals involved in the BEM have been evaluated analytically. As far
as the computational time is concerned, both the BEM and the MFS require al-
most the same modest amount of time (mainly used to invert the linear systems of
equations (16) or (23)); e.g. 3, 5 and 30 seconds for M ∈ {64, 128, 256} boundary
elements, respectively. Another interesting point to make is that in the MFS we
have experienced with various values of R > 1 and we have found that R between
1.01 and 1.15 produces the most accurate results. For larger values of R, the MFS
accuracy decreases showing that the harmonic function u outside the unit disk
domain Ω has reached its limit, i.e. the circle of radius R captured in its interior a
singularity of u. The nature of the Robin boundary condition (2) and, in general,
the sophisticated CEM makes it difficult to predict analytically beforehand where
the singularities of u lie in the exterior of Ω. In any case, R should be chosen
less that the magnitude of position vector of the nearest singularity to the origin.
Although the MFS has produced unstable solutions for large degrees of freedom,
such as M = N = 256, for lower values its accuracy and stability are excellent
when compared to the BEM numerical solution. Moreover, the MFS is much easier
to implement than the BEM especially in three-dimensional problems in irregular
domains. Immediate future work consists in applying the direct methods devel-
oped in this study to the inverse problem of the ERT/EIT.
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